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Abstract

Neural networks produced by standard training tend to suffer from poor accu-
racy on rare subgroups despite achieving high accuracy on average due to the
spurious correlation. Previously we proposed BAM, a novel two-stage training al-
gorithm, comprising a bias amplification stage with the learnable auxiliary variable
and rebalanced training stage using upweighted error samples, which empirically
improves the worst-group accuracy in various benchmarks with state-of-the-art
performance. To investigate the roles of different elements in BAM, including the
auxiliary variables and Class Difference stopping criterion, in this paper, we adopt
two new datasets and conduct extensive experiments with carefully controlled
parameters. With these experiments, we not only justify the assumption on the ef-
fectiveness of BAM but also shows the ubiquity of ClassDiff, for which we provide
detailed discussions.

1 Introduction

This is a followup work based on our prior work [22] 1.

The spurious correlation is a phenomenon in machine learning where a model tends to “learn"
certain decision rules based on spurious features such as backgrounds, thus likely to have unintended
behaviors for subgroups from a data distribution. It prevails in various fields, including computer
vision [1], natural language processing [9], and reinforcement learning [20], and due to the ubiquity
and gravity of this problem, extensive efforts have been made to address it.

Prior works mainly include methods that require group annotations for the whole training set or only
the validation set. For the latter, they usually train two models, where the first is used to identify
minority samples, based on which a second model is trained focusing on improving worst-group
classification performance [23, 26, 27, 40]. In contrast, in our prior work, we proposed the BAM
algorithm, which only requires training one model. BAM also contributes some interesting insights,
such as the two-stage training process comprising bias amplification with squared loss and rebalanced
training. With experiments on some commonly used benchmarks [35, 30, 24, 30, 36, 30, 2, 18], we
observed that BAM leads to consistent improvement in worst-group accuracy and achieves state-of-
the-art performance. However, to better understand why this procedure works well and how this
approach can be applied to more generalized settings, we need to look deeper into different elements
in BAM and perform experiments on more carefully constructed datasets.

In this work, we adopt two additional datasets: Controlled-Waterbirds and Colored-MNIST. By
carefully controlling their specifications and conducting experiments with various settings, such as

1We only provide abridged version of Related Works and Methodology Sections to avoid too much repetition.
Please refer to the original paper for more details.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



auxiliary variables, upweight factors, stopping epochs, and losses, we gain deeper insights into each
of them and validate the robustness of BAM.

2 Related Works

A variety of recent work discussed different realms of robustness, for instance, class imbalance
[10, 12, 15, 14, 33], and robustness in distribution shift, where the target data distribution is different
from the source data distribution [5, 39, 25, 19, 38]. In this paper, we mainly focus on improving
group robustness. Categorized by the amount of information we have for training and validation, we
discuss three directions below:

Improving Group Robustness with Training Group Annotations. Multiple works have used
training group annotations to improve worst-group accuracy [3, 16, 8, 4, 31]. Other works include
minimizing the worst-group training loss using distributionally robust optimization (Group-DRO)
[30], simple training data balancing (SUBG) [13], and retraining the last layer of the model on
the group-balanced dataset (DFR) [17]. These methods achieve state-of-the-art performance on all
benchmark datasets. However, acquiring spurious attributes of the entire training set is costly and
unrealistic in real-world datasets.

Improving Group Robustness with Validation Group Annotations Only. Acknowledging the
cost of obtaining group annotations, many recent works focus on the setting where training group
annotations are not available [7, 28, 21, 29]. Approaches closely related to our method usually use
the first model to identify minority samples and then train a separate model based on the results
predicted by the first model [37, 34]. For example, JTT [23] first trains an ERM model to identify
minority groups in the training set (similar to EIIL [6]), and then trains a second ERM model with
these selected samples to be upweighted. However, these approaches all focus on the robust training
of the second model and fail to consider the potential of accumulating biased knowledge from the
first model.

Improving Group Robustness without any Group Annotations. Relatively little work has been
done under the condition that no group information is provided for both training and validation.
[13, 23] observe a significant drop (10% - 25%) in worst-group test accuracy if using the highest
average validation accuracy as the stopping criterion without any group annotations. A recent work,
GEORGE [32], tries to separate unlabeled classes in deep model feature spaces and then use the
generated pseudo labels to train the model via the distributionally robust optimization objective.
However, there is a considerable performance gap between GEORGE and the supervised methods.

3 Methodology

In the previous work, we designed the BAM training algorithm consisting of a two stages.

In Stage 1, we train a bias-amplified model to bias toward majority group samples unintentionally.
Inspired by the work done by [11], we introduce trainable auxiliary variables bi for each data sample
and add it to the network’s output. The objective function is formally defined as:

R1(θ,B) =
1

n

n∑
i=1

ℓ(fθ(xi) + λbi, yi). (1)

where fθ : X → RC is a neural network with parameters θ and the class number C = |Y|, and λ is a
hyperparameter that controls the strength of the auxiliary variables. We also further adopt squared
loss ℓ(z, y) = ∥z − ey∥22 where ey ∈ RC is the one-hot encoding for the label y.

In stage 2, we continue to train the (same) model using the error set we obtained in Stage 1, i.e., data
points the model misclassifies. We adopt the rebalanced loss that upweights the examples in the error
set E:

R2(θ) = µ
∑

(x,y)∈E

ℓCE(fθ(x), y) +
∑

(x,y)∈D\E

ℓCE(fθ(x), y), (2)

where ℓCE is the cross-entropy loss and µ is a hyperparamter (upweight factor).

In particular, we have a special stopping criterion for Stage 2 training. Note that the group annotations
may or may not be available in our setting. We will stop at the highest worst-group validation
accuracy if it is available. However, if there are no group annotations presented, we will instead use
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the minimum class difference, i.e., stop when the sum of pairwise validation accuracy differences
between classes is at the minimum. The class difference can be formally defined as

ClassDiff =

C∑
i,j=1

|Acc(class i)− Acc(class j)|. (3)

In this work, we use the same method while focusing more on the experiment side.

4 Experiments

4.1 Datasets

The previous method we proposed, BAM, has been tested on datasets including Waterbirds, CelebA,
CivilComments-WILDS, and MultiNLI (see Table 3 for specifications) and outperformed state of the
art on nearly all of them. Some ablation studies about loss functions and auxiliary variables have also
been done to prove that all the model components are useful. However, as we see in Table 3, the sizes
of different classes and groups are not balanced on all four datasets. As the training process becomes
undetermined and unpredictable because of the nature of these datasets, we could not perform a
fine-grained analysis of the role of each model component. In addition, Waterbirds and CelebA
have significant distribution shifts in the training and test data, and two NLP datasets have too much
noise that impedes deep learning models from learning well on the classification task, even without
spurious correlation.

To further investigate how auxiliary variables, upweight factors, stopping epochs in Stage 1, and
losses play their roles in BAM and address the problems above, we consider two new CV datasets:
Controlled-Waterbirds and Colored-MNIST, and manually control their class and group counts. In
Colored-MNIST, we set class 0 for numbers from 0 to 4 and class 1 for numbers from 5 to 9. We
make the class labels spuriously correlated with colors and randomly flip the color of a small subset
to generate minority groups. Figure 1 shows what their majority and minority groups are. Table 1
shows some parameters of the two datasets.

Figure 1: Based on their group sizes, for Controlled-Waterbirds on the left, WW and LL are majority
groups. Similarly, for Colored-MNIST on the right, Class 0 in red and Class 1 in Green are majority
groups.

Table 1: Important parameters to construct Controlled-Waterbirds and Colored-MNIST.
Dataset Parameter Description

Controlled-Waterbirds d group sizes of WW, WL, LW, LL in order
s total dataset size

Colored-MNIST fr minority group ratios in class 0 & 1
cr class ratios of class 0 & 1
s total dataset size
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4.2 The Role of Auxiliary Variables

To validate that auxiliary variables help improve the model performance in a non-trivial way, we did
additional ablation studies on new datasets. Section 4.2

Figure 2 shows the change of model performance with different auxiliary variables. Note that λ = 0
will disable the auxiliary variables to fit training samples. With a moderately large λ · b, it is easy
to observe that the model achieves higher robust worst-group test accuracy than without b on both
datasets. It indicates the important role of auxiliary variables.
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Figure 2: Worst-group accuracy with different lambdas on Controlled-Waterbirds (left) and Colored-
MNIST (right). For Controlled-Waterbirds, we fix dataset parameters d = {1800, 200, 200, 1800}
and hyperparameters µ = 100, T = 100. For Colored-MNIST, we fix dataset parameters fr =
{0.1, 0.1}, cr = 1.0, s = 50000 and hyperparameters µ = 10, T = 50. For simplicity, we choose
the same hyperparameters of Controlled-Waterbirds as in Waterbirds in the previous work.

4.3 Negative Correlations of ClassDiff and Worst-Group Accuracy

Section 3 It explains the definition of ClassDiff, which is mainly used to evaluate when to stop Stage
2 without the help of validation group annotations. In Figure 3 of the previous work BAM, we show
the negative correlation between absolute validation class difference and worst-group accuracy on
all four benchmarks (Waterbirds, CelebA, CivilComments-WILDS, MultiNLI). In this project, we
did abundant experiments to verify its success on new datasets by varying the dataset sizes, class
size ratios, and group size ratios over a large range. In every single setting we tested, we observed
similar negative correlations. These findings suggest that ClassDiff could be useful in general when
no group annotation is available, as it is robust across different datasets and parameters. Here we
show one example per dataset each in Figure 3. Appendix A.3 displays a larger and random subset of
our experiments without cherry picking, and explains the subset generation details.
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Figure 3: Visualization on relations between ClassDiff and worst-group validation accuracy. Left:
Controlled-Waterbirds. d = {1400, 200, 600, 4200}, λ = 50, T = 100, µ = 100. Right: Colored-
MNIST. s = 50000, fr = {0.2, 0.2}, cr = 1.0, λ = 20, T = 11, µ = 5.
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5 Discussions
Different Dataset Sizes Since the total size of Waterbirds is limited, varying the total size could
cause a very small size of minority groups. Figure 4 shows the performance comparison of λ = 0 vs.
λ = 50. On Colored-MNIST, we see a tiny but persistent difference of different λ’s on robust worst-
group test accuracy from the left plot. The relation between ClassDiff and λ seems not observable,
while ClassDiff achieves good performance on all the total dataset size s listed above. The robust test
accuracy is comparably robust to s.
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Figure 4: Robust worst-group accuracy and minimum ClassDiff accuracy for different dataset sizes on
Colored-MNIST. We consider s ∈ {1000, 2000, 5000, 20000, 50000}, fix fr = {0.1, 0.1}, cr = 1.0,
and tune µ ∈ {5, 10, 20, 50}, T ∈ {20, 50}.

Different Class Imbalance Ratios Figure 5 shows the robustness of BAM w.r.t. class imbalance
ratios.
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Figure 5: Robust worst-group accuracy for different class imbalance ratios. For Controlled-Waterbirds
(left), we choose WW = 1400, WL = 200, λ = 50, T = 100. For Colored-MNIST (right), we
choose s = 20000, fr = {0.1, 0.1}, λ = 50, T = 20. Each point is averaged over 3 random
experiments.

Different Group Imbalance Ratios Figure 6 shows the robustness of BAM w.r.t. group imbalance
ratios.
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Figure 6: Robust worst-group accuracy for different class imbalance ratios. For Controlled-Waterbirds
(left), we choose WW = 1800, LL = 1800, λ = 50, T = 100. For Colored-MNIST (right), we
choose s = 20000, cr = 1.0, λ = 50, T = 50. Each point is averaged over 3 random experiments.
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Different Upweight Factors Since Colored-MNIST is a relatively simple dataset for addressing
spurious correlation problems, the change of worst-group performance is fairly tiny by varying the
upweight factor µ ∈ {2, 5, 10, 20, 50}. Appendix A.4 shows one example of the corresponding
accuracy with all the µ’s in the above set. On Controlled-Waterbirds, the trend is more obvious. In
general, as µ increases, the worst-group test accuracy first rises and then drops. However, over the set
µ ∈ {10, 50, 70, 100, 120, 150} that we tested, it is robust to µ within a large range from 50 to 150.
Figure 5, Figure 6 and Table 2 show such robustness.

Table 2: Experiments on Controlled-Waterbirds dataset. Parameters and hyperparameters are d =
{1800, 200, 200, 1800}, λ = 50.

T
Upweight factor µ

10 50 70 100 120 150
10 74.4 84.6 86.1 84.6 84.6 84.6
20 72.2 84.6 87.2 86.1 87.2 84.6
50 63.9 86.1 86.1 88.9 86.1 86.1

Different Stage 1 Epochs In Figure 10 and Figure 11, KDE-plot shows how the values of auxiliary
variables changes as Stage 1 proceeds. Carefully controlling all other parameters and hyperparameters,
we observe some clear patterns below on these two datasets: First, as T grows, the logits become
larger and increasingly influence the model prediction outputs. Second, minority and majority groups
are easier to be separated from each other, resulting in better error sets.

In summary, a larger T will generally lead to a better error set, while the model prediction will be
wrong on majority groups if T is too large.
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Figure 7: (a)(b) Epoch 1 and 100 in Stage 1 on Waterbirds. Logit 0 corresponds to the prediction on
the waterbird class, and logit 1 corresponds to landbird. The group sizes are 1800, 200, 200, 1800 in
order. (c)(d) Epoch 1 and 4 in stage 1 on Colored-MNIST. Logit 0 corresponds to the prediction on
class 0, and logit 1 corresponds to class 1.

6 Conclusion

In this paper, we tested and analyzed BAM on two new datasets and verified the robustness of BAM
varying a large range of parameters and hyperparameters (e.g., the total data size, class imbalance
ratio, and group imbalance ratio, µ, T ). In addition, we demonstrate the effectiveness of auxiliary
variables by varying values of λ. We also validate the negative correlation between ClassDiff and
worst-group validation accuracy, which indicates its potential to supplant validation group annotations
for less burden.

For future work, we will

• Look deeper into the effects of different losses in Stage 1.
• Validate BAM on more complex datasets such as CIFAR10-MNSIT, and test ClassDiff on

multi-classification datasets.
• Aalternate the second stage of BAM with the method proposed by [40], and analyze whether

this could improve the performance of the second stage.

6



References
[1] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the

European conference on computer vision (ECCV), pages 456–473, 2018.

[2] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced metrics for
measuring unintended bias with real data for text classification. In Companion proceedings of the 2019
world wide web conference, pages 491–500, 2019.

[3] Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning? In
International Conference on Machine Learning, pages 872–881. PMLR, 2019.

[4] Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, and Tengyu Ma. Heteroskedastic
and imbalanced deep learning with adaptive regularization. arXiv preprint arXiv:2006.15766, 2020.

[5] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don’t take the easy way out: Ensemble based
methods for avoiding known dataset biases. arXiv preprint arXiv:1909.03683, 2019.

[6] Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant learning. In
International Conference on Machine Learning, pages 2189–2200. PMLR, 2021.

[7] John Duchi and Hongseok Namkoong. Variance-based regularization with convex objectives. The Journal
of Machine Learning Research, 20(1):2450–2504, 2019.

[8] Karan Goel, Albert Gu, Yixuan Li, and Christopher Ré. Model patching: Closing the subgroup performance
gap with data augmentation. arXiv preprint arXiv:2008.06775, 2020.

[9] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. Annotation artifacts in natural language inference data. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 107–112, New Orleans, Louisiana, June 2018. Association
for Computational Linguistics.

[10] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Transactions on Knowledge and
Data Engineering, 21(9):1263–1284, 2009.

[11] Wei Hu, Zhiyuan Li, and Dingli Yu. Simple and effective regularization methods for training on noisily
labeled data with generalization guarantee. arXiv: Learning, 2020.

[12] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning deep representation for imbalanced
classification. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
5375–5384, 2016.

[13] Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple data balancing
achieves competitive worst-group-accuracy. In Conference on Causal Learning and Reasoning, pages
336–351. PMLR, 2022.

[14] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class imbalance. Journal of
Big Data, 6(1):1–54, 2019.

[15] Salman H Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A Sohel, and Roberto Togneri.
Cost-sensitive learning of deep feature representations from imbalanced data. IEEE transactions on neural
networks and learning systems, 29(8):3573–3587, 2017.

[16] Fereshte Khani, Aditi Raghunathan, and Percy Liang. Maximum weighted loss discrepancy. arXiv preprint
arXiv:1906.03518, 2019.

[17] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient for
robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

[18] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne David, Ian Stavness,
Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson,
Sergey Levine, Chelsea Finn, and Percy Liang. Wilds: A benchmark of in-the-wild distribution shifts. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 5637–5664. PMLR, 18–24
Jul 2021.

[19] Yoonho Lee, Huaxiu Yao, and Chelsea Finn. Diversify and disambiguate: Learning from underspecified
data. arXiv preprint arXiv:2202.03418, 2022.

7



[20] Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg, Julie Beaulieu, Peter J Bentley,
Samuel Bernard, Guillaume Beslon, David M Bryson, et al. The surprising creativity of digital evolution:
A collection of anecdotes from the evolutionary computation and artificial life research communities.
Artificial life, 26(2):274–306, 2020.

[21] Daniel Levy, Yair Carmon, John C Duchi, and Aaron Sidford. Large-scale methods for distributionally
robust optimization. Advances in Neural Information Processing Systems, 33:8847–8860, 2020.

[22] Gaotang Li, Jiarui Liu, and Wei Hu. Bias amplification improves worst-group accuracy without group
information. Artificial life, 26(2):274–306, 2020.

[23] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy
Liang, and Chelsea Finn. Just train twice: Improving group robustness without training group information.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 6781–6792. PMLR, 18–24
Jul 2021.

[24] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. 2015
IEEE International Conference on Computer Vision (ICCV), pages 3730–3738, 2015.

[25] Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro
Yasunaga, Richard Lanas Phillips, Sara Beery, Jure Leskovec, Anshul Kundaje, et al. Wilds: A benchmark
of in-the-wild distribution shifts. arXiv preprint arXiv:2012.07421, 2020.

[26] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure: De-biasing
classifier from biased classifier. Advances in Neural Information Processing Systems, 33:20673–20684,
2020.

[27] Junhyun Nam, Jaehyung Kim, Jaeho Lee, and Jinwoo Shin. Spread spurious attribute: Improving worst-
group accuracy with spurious attribute estimation. arXiv preprint arXiv:2204.02070, 2022.

[28] Yonatan Oren, Shiori Sagawa, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust language
modeling. arXiv preprint arXiv:1909.02060, 2019.

[29] Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina Precup, and Guillaume
Lajoie. Gradient starvation: A learning proclivity in neural networks. Advances in Neural Information
Processing Systems, 34:1256–1272, 2021.

[30] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural
networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint
arXiv:1911.08731, 2019.

[31] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why overparame-
terization exacerbates spurious correlations. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 8346–8356. PMLR, 13–18 Jul 2020.

[32] Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass left behind:
Fine-grained robustness in coarse-grained classification problems. Advances in Neural Information
Processing Systems, 33:19339–19352, 2020.

[33] Fadi Thabtah, Suhel Hammoud, Firuz Kamalov, and Amanda Gonsalves. Data imbalance in classification:
Experimental evaluation. Information Sciences, 513:429–441, 2020.

[34] Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna Gurevych. Towards debiasing nlu models from
unknown biases. arXiv preprint arXiv:2009.12303, 2020.

[35] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge J. Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

[36] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.

[37] Yadollah Yaghoobzadeh, Soroush Mehri, Remi Tachet, Timothy J Hazen, and Alessandro Sordoni. In-
creasing robustness to spurious correlations using forgettable examples. arXiv preprint arXiv:1911.03861,
2019.

8



[38] Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Improving
out-of-distribution robustness via selective augmentation. arXiv preprint arXiv:2201.00299, 2022.

[39] Jingzhao Zhang, Aditya Menon, Andreas Veit, Srinadh Bhojanapalli, Sanjiv Kumar, and Suvrit Sra. Coping
with label shift via distributionally robust optimisation. arXiv preprint arXiv:2010.12230, 2020.

[40] Michael Zhang, Nimit S Sohoni, Hongyang R Zhang, Chelsea Finn, and Christopher Ré. Correct-n-contrast:
A contrastive approach for improving robustness to spurious correlations. arXiv preprint arXiv:2203.01517,
2022.

9



A Appendix

A.1 Team contributions

Name Contributions
Jiarui Liu Designed, ran experiments; analyzed results; Visualized figures; Wrote Experiments and Discussions Sections.

Muzhe Wu Visualized figures; wrote Abstract, Introduction, Related Works, Methodology (adaption), and Conclusion Sections.

A.2 Prior Dataset Specifications

Table 3: Group counts for training sets of Waterbirds, CelebA, CivilComments-WILDS, and MultiNLI.
We can observe that these datasets exhibit clear class and group imbalance.

Dataset Group Description Group Size Dataset Group Description Group Size

Waterbirds

Waterbird in water (WW) 1057

CelebA

Blond and female 22880
Waterbird in land (WL) 56 Blond and male 1387
Landbird in water (LW) 184 Not blond and female 71629
Landbird in land (LL) 3498 Not blond and male 66874

MultiNLI

Contradiction with negation 57498

CivilComments-WILDS

Toxic with identity 17784 Contradiction without negation 11158
Toxic without identity 12731 Entailment with negation 1521
Non toxic with identity 90337 Entailment without negation 67376

Non toxic without identity 148186 Neutral with negation 1992
Neutral without negation 66630

A.3 ClassDiff Visualization

We generate a random subset of experiments with size 10 and visualize their relations between
ClassDiff and worst-group validation accuracy. First, we sort all the experiment logs on Greatlakes
by their starting training time. Then, fix 42 as the random seed of Numpy and generate a random
indices list with size 10. We select the experiments by these indices and plot the ClassDiff relations
to avoid cherry picking.

A.4 Upweight Factors Visualization

Table 4 shows that Colored-MNIST does not have clear differences when vary upweight factors.

Table 4: Experiments on Colored-MNIST dataset. Parameters and hyperparameters are s =
50000, fr = {0.1, 0.1}, cr = 1.0, λ = 50.

Upweight factor µ

2 5 10 20 50

T

10 92.9 95.3 95.9 95.5 96.3

20 93.1 95.1 96.3 95.9 96.3

30 92.7 94.9 95.9 95.9 96.3

40 93.1 94.7 95.9 95.9 96.7

50 93.4 94.9 94.7 95.7 96.5

A.5 Different Epochs visualization
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Figure 8: 10 random experiments of the relations between ClassDiff and worst-group validation
accuracy on Controlled-Waterbirds.
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Figure 9: 10 random experiments of the relations between ClassDiff and worst-group validation
accuracy on Colored-MNIST.
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Figure 10: Different epochs in Stage 1 on Waterbirds. Logit 0 corresponds to the prediction on the
waterbird class, and logit 1 corresponds to landbird. The group sizes are 1800, 200, 200, 1800 in
order.
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Figure 11: Different epochs in Stage 1 on Colored-MNIST. Logit 0 corresponds to the prediction on
class 0, and logit 1 corresponds to class 1.
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