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Abstract. As we witness groundbreaking advancements in Artificial
Intelligence (AI), it is clear that the next generation must be equipped
with AI literacy: the skill to interact, evaluate, and collaborate with AI
systems. This study introduces ActiveAI, a scalable web-based tutoring
system aligned with AI4K12’s five big ideas in AI, designed to foster
AI literacy among K-12 students through active learning and interaction
with intelligent agents. A controlled classroom study involving 171 mid-
dle school learners was conducted to assess the effectiveness of ActiveAI
in fostering AI literacy skills and competency toward AI. Results showed
that, compared to students in the tell-and-practice control condition, stu-
dents who used ActiveAI exhibited higher post-test performance in the
module about how next-word prediction and temperature work in large
language models. Students also developed higher self-reported compe-
tence toward AI after using ActiveAI than in the control condition. We
conclude by suggesting assessment designs that promote deeper engage-
ment with AI concepts by addressing students’ common misconceptions,
like “AI thinks just like humans”, in K-12 AI literacy education.

Keywords: AI Literacy · Intelligent Agents · Experiential Learning ·
K-12 · Instructional Design · AI education · Classroom Implementation

1 Introduction

The advancements in Artificial Intelligence (AI), largely due to the popularity of
generative AI, have made the need for AI literacy across the educational spec-
trum more crucial than ever. As AI becomes increasingly integral to a wide array
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of applications, it is essential for K-12 students to understand how to interact
with these technologies and recognize their capabilities and limitations [7,20].
Initiatives in various parts of the world have aimed to integrate AI education
into the K-12 curriculum. For example, Song et al. (2023) developed a com-
prehensive AI syllabus for compulsory education, showing positive outcomes in
primary schools in China [24]. Also, Touretzky et al. (2022) introduced a flexible,
nine-week elective AI course in middle schools across Georgia, USA, effectively
engaging students with AI’s technical aspects [29]. While these initiatives have
been groundbreaking in introducing AI to the younger generation of students,
they rely on various tools, platforms, and passive instructional material that
necessitate significant investments in teacher training and resources. Given the
imminent ubiquity of AI in future professional and everyday life scenarios, there
is a pressing need for a more accessible and scalable approach to AI literacy
education for K-12 learners.

To address this, we designed and developed ActiveAI, a scalable interactive
tutoring system that is guided by the five big ideas of the AI4K12 initiative: Per-
ception, Representation & Reasoning, Learning, Natural Interaction, and Soci-
etal Impact [30]. These ideas cover how AI systems perceive the world, represent
and reason with data, learn from experiences, interact naturally with humans,
and impact society. By doing so, we aim to make AI literacy education more
accessible and adaptable as well as reduce the burden on teachers to learn mul-
tiple, disparate AI Literacy strategies.

In ActiveAI, each module incorporates active learning through intelligent
agents and assessments that aim to transfer student learning to the real world.
By directly interacting with AI in the tutoring system, students can gain a
deep understanding of AI capabilities, including its inherent randomness and
unpredictability, without the need for direct programming. In addition, ActiveAI
emphasizes experiential learning, encouraging students to actively engage in con-
structing AI solutions. It further enhances learning with immediate, targeted
feedback and on-demand hints, designed to provide an effective and engaging
AI literacy learning experience. We also conducted a controlled classroom study
with 171 middle school learners to evaluate its effectiveness in fostering students’
AI literacy. Our research questions are as follows:

1. Do middle school students achieve higher AI literacy learning outcomes from
engaging with ActiveAI than from the tell-and-practice control condition?

2. Do middle school students show higher competence in using AI after engaging
with ActiveAI than from the tell-and-practice control condition?

3. Do middle school students show higher levels of engagement when interacting
with ActiveAI compared to the tell-and-practice control condition?
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2 Background

Active learning [3] and experiential learning [20] methods are essential for K-
12 AI literacy education, effectively engaging learners with new AI concepts
[8,23]. For instance, active learning has been applied to teach complex topics
like generative adversarial networks and supervised machine learning models in
middle school settings [1,9,11]. Experiential learning, which involves hands-on
experiences and reflection [14], is also vital. They help students link AI theo-
ries to real-world applications through unplugged activities, programming, and
intelligent agents.

Unplugged activities teach AI concepts without computers, often through
role-playing, simulations, and physical manipulatives, allowing educators to
introduce complex AI concepts in an engaging way [1,2,9]. An example is using
hand-drawn decision trees in an after-school program to teach about decision
algorithms [16]. Programming activities enable students to build AI algorithms
using platforms like Colab for teaching Python programming and ML/NLP algo-
rithms. This approach uses constructivist strategies for hands-on learning and
real-world application [4,17]. Block-based programming environments like Cog-
nimates are also used, suitable for younger learners [6]. Narrative scripts can
be used to educate adolescents about social media algorithms’ nuances, thereby
cultivating a more informed and critical perspective toward AI technologies [27].
Intelligent agents, such as expert systems and machine learning trainers, are
increasingly used for hands-on AI model building and interaction without coding.
For example, Google Teachable Machine has been used by sixth graders for creat-
ing machine learning applications [28], and tools like ArtBot and VotestratesML
engage older students in understanding AI concepts and societal implications
[12,32].

Although these pedagogies effectively foster AI literacy in K-12 students,
they often require specialized training. Each strategy focuses on specific mod-
ules or narrow aspects of AI literacy, demanding frequent educator training to
integrate these methodologies into curricula. This aspect, while not diminish-
ing the invaluable contributions of these pedagogies, highlights a challenge in
broadly applying these methods across diverse AI concepts.

A scalable way to address these challenges is the use of interactive tutoring
systems. Research has shown that intelligent tutoring systems (ITS) are efficient
in both well-defined domains like mathematics [19] and programming [5], and
ill-defined domains [21]. There is also preliminary work in applying these systems
to AI literacy for adult learners [31]. These systems can provide personalized,
scalable learning experiences and reduce the need for extensive teacher training
by offering direct instructional support to students. Our current research aims to
fill the gap by integrating these advanced tutoring systems into K-12 AI literacy
education, thereby making AI learning more accessible and scalable.
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Fig. 1. A)Concrete Experience B)Reflective Observation C)Active Experimentation.

3 ActiveAI: An Interactive Tutoring System for K-12 AI
Literacy

3.1 Instruction Design

The ActiveAI system, designed for teaching the five big ideas of AI4K12 to 7–
9 grade students, uses an active learning approach integrating proven learning
science mechanisms.

Embedded Intelligent Agents. Each module includes intelligent agents
(Fig. 2C) for engaging with AI algorithms without programming. These agents
highlight AI randomness and uncertainty while addressing ethical concerns in
student-AI interactions. Formative assessments provide feedback during learn-
ing.

Experiential Learning. The ActiveAI modules embody experiential learn-
ing through four phases: Concrete Experience, Reflective Observation, Abstract
Conceptualization, and Active Experimentation [14]. An example is the How
Temperature Shapes the Response of LLM module in Fig. 1.

– Concrete Experience: Students start by observing a chatbot with a
medium temperature setting completing a sentence. They then compare this
with the chatbot’s responses at high and low-temperature settings. Typically,
a low temperature leads to more predictable results, while a high tempera-
ture results in more surprising outcomes. Probability of each word within the
sentence’s context is highlighted using color coding (Fig. 1A).

– Reflective Observation: Students are prompted to consider how the “tem-
perature” setting affects the chatbot’s sentence completion. They use a slider
to experiment with different temperature settings, observing the varying out-
comes. This activity is designed to help students discern the relationship
between temperature and chatbot output, reducing the cognitive load of mem-
orizing details (Fig. 1B). The expected realization is that a high temperature
setting leads to more surprising word choices, whereas a low temperature
favors common words.
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– Abstract Conceptualization: Following this, students apply their new-
found understanding by selecting the most appropriate temperature settings
for different tasks. For instance, when tasked with scripting a sci-fi movie
that requires intriguing dialogues and unexpected plot twists, they should
recognize that a high-temperature setting is more suitable.

– Active Experimentation: Finally, students apply their knowledge to sev-
eral practical scenarios they might encounter in daily life. For instance, They
might be asked to “gather facts for a biology project”, choosing a topic in
biology and selecting a temperature setting for the task. An intelligent agent,
powered by GPT-3.5, generates content in both high and low-temperature
settings based on the student’s input in real-time (Fig. 1C). If an inappropri-
ate temperature setting is chosen, targeted feedback is provided to address
any gaps in understanding.

3.2 System Design & Implementation

ActiveAI’s educational content is scalable, built with React.js, and managed in
JSON format for easy updates. The design incorporates specific learner input
modalities to optimize AI literacy education by reducing cognitive load and
focusing on core AI concepts.

We selected three learner input modalities to interact with intelligent agents:
sliders, steppers, and collectors. These reduce the extraneous cognitive load asso-
ciated with learning new interactions [18] and enhance learning efficiency, sup-
porting scalable module development.

– Collector: Enables students to gather or label datasets, fostering active par-
ticipation in learning and a deeper understanding of data’s role in AI [22].

– Slider: Allows students to adjust variables like classification model thresh-
olds, providing immediate feedback and facilitating adjustments in real-time
to grasp the fluid nature of AI algorithms [10].

– Stepper: Controls time-related variables or offers step-by-step explanations,
reducing cognitive overload through the segmentation principle of multimedia
learning [18].

In addition to these interactive elements, we also integrated features based
on principles of intelligent tutor design consistent with best practices across all
learning activities within the modules:

– On-demand Hint: Offers targeted help when students struggle to foster
independence and deeper understanding, as per scaffolding approach [35].

– Step-based Feedback: Provides immediate responses to reinforce learning
and address misunderstandings, as per the feedback intervention theory [13].

– Progress Bar: Visualizes students’ advancement, promoting a sense of
achievement and motivation, as per self-regulated learning research [36].
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4 Classroom Evaluation Study

4.1 Experimental Design

The primary aim of this study was to evaluate the effectiveness of ActiveAI in
enhancing students’ AI literacy. Specifically, we sought to understand if ActiveAI
leads to greater post-test performances, increased competence in using AI tech-
nology, and a more engaging learning experience compared to the conventional
‘tell and practice’ approach often employed in AI education. To achieve this,
we conducted a classroom study in middle school, focusing on two AI literacy
modules:

– Module 1 Next Word Prediction & Temperature in Large Language Models
1.1. Articulate how large language models predict the next word in a sequence
1.2. Analyze the role of temperature in chatbot decision-making to predict its

influence on sentence completion
– Module 2 Image Classification: Bias in Training Data & How to Reduce It
2.1. Determine features that predict labels from patterns in labeled data
2.2. Explain how the choice of training data shapes behavior of the classifier,

and how bias can be introduced if the training set is not properly balanced

Within each module, we incorporated a structured approach consisting of a
pre-test, the intervention followed up with a survey, and a post-test (Table 1).
Due to time limitations, we only applied the 12-question survey to measure
student competence in using AI [33] once after the first learning objective to
compare treatment and control conditions. Additionally, a question regarding
engagement was asked after finishing each module.

The control condition we used in this study mirrors the existing common
practices in K-12 AI literacy studies involving experiential learning in the form
of tell and practice [26], reading about and interacting with AI intelligent agents.
The same instructional text and intelligent agent used in the ActiveAI modules
were delivered to students. The only difference was that, in the control condition,
there were no formative assessments or explanatory feedback (Fig. 2).

Our experimental design, shown in Table 1, counterbalances the instructional
conditions across the learning objectives, effectively controlling for test difficulty
and eliminating potential bias. This approach guarantees that any observed dif-
ferences in outcomes can be attributed more confidently to the instructional
methods employed than to external factors. Specifically, we developed two test
forms for each learning objective (L1a, L1b, and L2a, L2b) containing isomor-
phic questions to each other. These forms were carefully crafted in collaboration
with an AI expert, ensuring that both possessed equivalent difficulty and content
coverage. By reversing the order of the tests for each subgroup, our design also
mitigates the effects of test difficulty, enabling a fair comparison between the
two test forms.
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Fig. 2. The treatment condition (A) includes formative assessments with hints and
feedback, while the control condition (B) does not. Both conditions use the same intel-
ligent agent interactions shown in (C).

Table 1. Overview of Experimental Conditions and Testing Sequence

Subgroup Pre-test Instruction Survey & Post-test Pre-test Instruction Survey & Post-test

1 L1a L1 Experiment Competence + Engagement + L1b L2a L2 Control Engagement + L2b
2 L1b L1 Experiment Competence + Engagement + L1a L2b L2 Control Engagement + L2a
3 L1a L1 Control Competence + Engagement + L1b L2a L2 Experiment Engagement + L2b
4 L1b L1 Control Competence + Engagement + L1a L2b L2 Experiment Engagement + L2a

4.2 Participants

171 Taiwanese eighth-grade students, aged 14–15, were recruited to participate
this study. The age distribution was carefully balanced across all experimental
conditions. Students were randomly assigned to different subgroups. Each learner
experienced either the ActiveAI module or the traditional ‘tell and practice’
condition in one lesson, and then the alternate condition in the subsequent lesson.
In the data analysis phase, we focused on students who completed both pre- and
post-tests for Learning Objectives 1 (L1) and 2 (L2). This resulted in a final
sample of 115 students for L1 and 99 students for L2. After the study, another
8 students, different from the 171 students who took part in the study, were
selected by the teachers for the think-aloud and the interview.

4.3 Procedure

The study was conducted during students’ scheduled digital literacy classes.
Each participant had access to a desktop computer and the Internet. Stu-
dents were randomly assigned to one of four conditions (Table 1) by their
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teacher. Pre- and post-tests were administered via Google Forms, and the
instructional content for all conditions was delivered through the ActiveAI plat-
form. Participants spent approximately 5min completing a pretest to assess their
existing AI knowledge, followed by 15min of learning with an instructional mod-
ule. Afterward, they completed a post-test and surveys to evaluate their learn-
ing outcomes and experiences. This procedure was repeated for the subsequent
learning objective, totaling 50min of study time.

We also conducted think-aloud interviews with another 8 students to inter-
act with ActiveAI. Eight participants engaged in the one-on-one sessions with
researchers via Zoom, conducted in the teacher’s office. These interviews were
divided into two phases: first, participants shared their screen and interacted
with an ActiveAI module for 15min, during which they were encouraged to
verbalize their thoughts (think-aloud protocol). Following module completion,
a 15-minute interview was conducted to understand their learning experiences
and suggestions for instructional and system design enhancements. They were
asked to rate the likelihood of applying what they learned on a scale from 1 (not
likely) to 10 (very likely). Ethical compliance was ensured through Institutional
Review Board (IRB) approval for participant recruitment and data collection.

4.4 Data Analysis

For RQ1, we analyzed students’ pre-and post-test scores in two learning objec-
tives by converting their responses into percentage scores. For RQ2, we measured
students’ competence in using AI technology by averaging their responses to 12
survey questions, ranging from 1 to 7, based on the validated AI literacy scale
by Wang et al. (2023). For RQ3, student engagement for each module was calcu-
lated using the one-item survey question “How engaged are you in the learning
activities of this unit? ”, resulting in an engagement score from 1 to 7. Regard-
ing students’ think-aloud and interviews, two researchers performed a thematic
analysis of the video recordings and transcripts. This approach allowed us to
delve deeper into the students’ experiences and interactions with the learning
material to further unpack our findings in the research questions.

5 Results

5.1 RQ1: Higher Learning Outcomes for L1, No Significant
Improvement for L2

Distribution of the Data. We conducted the Shapiro-Wilk test to examine the
normality of both learning objectives L1 (pre-test: p <.001, post-test: p <.001)
and L2 (pre-test: p <.001, post-test: p <.001). Neither the pre- or post-tests for
L1 and L2 are normally distributed.

Difficulty Difference Between Two Test Versions. Given that our data
did not follow a normal distribution, we conducted a non-parametric statistical
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Table 2. Pre- and post-test performance for L1 & L2 by condition

Learning Objective 1 Learning Objective 2
Condition Test Median S.D. N Median S.D. N

Treatment Pre 58.82 23.24 61 50.00 15.72 44
Post 70.59 20.59 61 66.67 22.19 44

Control Pre 44.12 25.87 54 60.00 22.24 55
Post 58.82 26.04 54 60.00 27.13 55

test, the Mann-Whitney U test, to determine if there was a significant difference
between students within the same treatment condition who received different pre
and post-tests in Table 1. Confirming the test versions for Learning Objective 1
(L1) were well matched, we found no significant differences for students in the
treatment condition who took different pre-test versions, U = 29.5, p = .316,
CLES = .34, and post-test versions, U = 36.0, p = .582, CLES = .41. Similarly,
we found no significant differences for students in the control condition who took
different pre-tests, U = 31.5, p = .204, CLES = .75, and post-tests, U = 29.0,
p = .340, CLES = .69. Similarly for Learning Objective 2 (L2), we found no
significant differences in treatment pre-test versions, U = 21.5, p = 1.0, CLES
= .51, treatment post-test versions, U = 21.0, p = 1.0, CLES = .50, control pre-
test versions, U = 28.0, p = .262, CLES = .32, and control post-test versions, U
= 29.5, p = .313, CLES = .34. Given consistent student performance across test
versions, we aggregate test version groups into a single group for each learning
objective and test-time.

Effectiveness of ActiveAI on Learning. Initial analysis using the Wilcoxon
Signed-Rank Test indicated significant improvements in scores from pre-test to
post-test for both Learning Objectives L1, W = 1263.0, p < .001, CLES =
.38 and L2, W = 842.0, p = .008, CLES = .41, across all conditions. These
results suggest in both treatment and control conditions, students’ performance
improved in both objectives after the learning session.

Descriptive statistics about student test scores for each learning objective
(L1 and L2) in each condition are included in Table 2. We conducted a series
of Mann-Whitney U tests to examine differences between the treatment and
control groups. The pre-test scores for both L1, U = 1921.0, p = .122, CLES =
.58 and L2, U = 1182.5, p = .846, CLES = .49 showed no significant differences
between the treatment and control groups, indicating that the two groups are
comparable. We then found a significant difference between the treatment and
control groups on L1 post-test scores, U = 2049.0, p = .023, CLES = .62, showing
students who used ActiveAI achieved significantly higher post-test performance
in L1 than those in the control condition. However, there were no condition
differences in L2 post-test scores, U = 1282.5, p = .608, CLES = .53.

To probe possible reasons why ActiveAI treatment was more effective than
the tell-and-practice control for L1 but not for L2, we analyzed students’ think-
aloud transcripts while interacting with the module and the follow-up interviews.
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We found that, when completing the AI literacy learning activities, a recur-
ring student misconception was that AI systems “think just like humans”. This
assumption, while incorrect in general, occasionally leads to correct answers,
especially in module L2 which focuses on image classification. For instance, when
tasked with identifying relevant features for a fruit image classification model,
students were presented with options like the fruit’s country of origin, physi-
cal attributes, or taste. P2 reasoned: “Taste is too abstract, and determining a
fruit’s origin country is challenging. Therefore, ‘color, shape, and size’ are the
most straightforward attributes for ‘anyone’ to identify a fruit.” This response,
though aligning with the correct answer, was based on the assumption that AI
“thinks” like humans, rather than an understanding of AI capabilities.

However, this misconception fails in L1 and in more complex scenarios in L2.
For example in L2, when faced with an assessment (If a classification model is
trained on a dataset with only red and yellow fruits, how will it likely classify a
green fruit?), P2 initially wavered between two incorrect options (a. Correctly, as
a new category of green fruits; b. It will ask for more data on green fruits before
making a decision). She reasoned that distinguishing between green, yellow, and
red is easy for humans, hence she chose a. It was only after selecting the wrong
answers and engaging with the feedback and hints that she realized the need to
shift her perspective: “I think I start to get it; I have to think from the robot’s
perspective.” Conversely, L1’s focus on how temperature settings in large lan-
guage models (LLMs) influence chatbot responses, which diverge from human
decision-making processes, did not lend itself to the “AI thinks like humans”
heuristic. The heuristic is not applicable for L1 items in the post-test.

For the L2 post-test, as both the correct understanding of AI principles and
the heuristic lead to the correct answer for the majority of items (5 out of 6), it
is difficult to discern whether treatment students are relying less on the misun-
derstanding as a heuristic. However, for one specific item that directly relates to
the formative assessment described above, which was designed to reveal reliance
on the heuristic, we observed a difference in student performance by condi-
tion: 70.45% of students in the treatment group answered correctly, compared
to 58.18% in the control group. Given that this item’s distractor options were
specifically aligned with heuristic thinking, it could suggest a deeper understand-
ing of AI concepts among students in the treatment group.

5.2 RQ2: Improved Self-Reported Competency in AI Technology

The Shapiro-Wilk test indicated that the data on students’ competence in AI
were not normally distributed. Therefore, we conducted a Mann-Whitney U test
and found that the treatment group scored higher in overall competence in using
AI technology compared to the control group, p = .022 (Table 3).

In terms of the qualitative feedback, participants expressed that what they
learned in ActiveAI could help them better leverage AI technology in the future.
Specifically, six out of eight students (75%) rated their likelihood of applying what
they learned in the future as’very likely’ (scores above 7 out of 10). P1 remarked,
“In this AI era, it helps to clear doubts and gain a deeper understanding of emerging
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Table 3. Student competence in AI literacy by condition

Treatment Control U p-value CLES
Median S.D. Median S.D.

4.4 1.2 4.0 1.2 1237.5 .022 0.38

Table 4. Student engagement for L1 & L2 by condition

Learning Objective Treatment Control U p-value CLES
Median S.D. Median S.D.

L1 4.0 2.1 4.0 1.6 1458.5 .281 .44
L2 5.0 1.4 5.0 1.7 1235.0 .860 .51

technologies.” Another student, P6, shared, “It’s highly probable, as AI is becoming
increasingly prevalent. I might encounter similar situations, even if I don’t pursue
a career in AI. The modules exposed me to knowledge I rarely encounter. I really
liked it and might use it in the future, possibly in a related job.” However, two out
of the eight students rated their likelihood as ‘likely’ (scores between 5 and 6),
possibly due to the inherent difficulty of the content. P8 who gave a score of 5
commented on the complexity of the concepts: “For now, it seems okay, but in
the future, it might be useful. Some of the knowledge is quite difficult to grasp, but
understanding the simpler parts is feasible”.

Notably, although L2 did not explicitly address generative AI, some par-
ticipants expressed that they were able to apply their understanding of how
training data influences classification models to grasp the content generation
process of ChatGPT, a tool they frequently use. For example, P3 noted, “When
using ChatGPT, I can now understand how it generates responses.” P2 added,
“In daily life, using ChatGPT might yield answers tailored to my habits... Reduc-
ing AI bias could lower the risks associated with AI use, protect user rights, and
ensure safer AI interactions. It could also lead to more accurate responses when
AI generates content.”

5.3 RQ3: Engagement Levels

The Shapiro-Wilk test indicated that the learner engagement data for both learn-
ing objectives L1, p < .001 and L2, p < .001 exhibited a non-normal distribution.
Therefore, we conducted a Mann-Whitney U test but found no significant dif-
ferences in student engagement for L1, p = .281 or L2, p = .860.

When inquiring about the elements of the ActiveAI modules that engaged
them versus those that led to disengagement, students overwhelmingly favored
the hands-on experience of constructing AI solutions. This preference was par-
ticularly directed towards the intelligent agent component, a feature present
in both the treatment and control conditions. For example, P3 mentioned, “I
found the hands-on classification task particularly memorable, especially when
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I encountered a little failure. It made a lasting impression and was the most
interesting part for me.”

P2 elaborated on this preference: “I enjoy practical tasks more than theoretical
ones. For instance, physically demonstrating a concept is far more appealing than
just learning about it theoretically. Theoretical content tends to be less concrete
and more abstract, making it somewhat dull. For example, the second part of the
module, categorizing images of dogs playing or sleeping, was engaging because it
was hands-on. However, the third part, which focused on machine learning bias
in society, felt more tedious as it was largely theoretical. Such theoretical aspects
are often basic and can be deduced using common sense or everyday experiences.”

6 Discussion and Limitations

The ActiveAI modules demonstrated significant post-test performance in
ActiveAI, with L1 showing a notable advantage over the control condition, while
L2 did not exhibit a significant difference. These results suggest that the tutoring
system has the potential to enhance AI literacy among learners, though the dif-
ferential impact between L1 and L2 raises intriguing questions about the relative
effectiveness of these modules.

Qualitative analysis of students’ interactions suggests that the heuristic of
“AI thinks just like humans” might have influenced the outcomes, particularly in
L2. This heuristic allowed students to answer some image classification questions
correctly without fully grasping the underlying AI concepts. While ActiveAI’s
feedback and hints feature has shown potential in aiding learners to identify and
rectify such misconceptions, as evidenced by think-aloud sessions, the current
design of the L2 assessment may not adequately reflect this learning process.
Future research should integrate these findings into the instructional and assess-
ment design processes to more effectively capture and enhance the learning expe-
rience. Future work can also investigate the use of generative AI to provide more
personalized feedback and hints [25].

In addition, this observation has significant implications for K-12 AI educa-
tion, particularly in the design of AI Literacy assessments. To counteract the
reliance on such heuristics, we recommend incorporating distractors that chal-
lenge this assumption. This approach can help identify students’ misconceptions
and assess their understanding of AI principles more accurately, encouraging
deeper engagement with AI concepts. For example, the fruit image classification
task could be redesigned to more effectively test understanding of AI capabilities.
A revised question might ask:

Redesigned Question: When training an image classification model to identify
poisonous plants from photos, which features should it prioritize in training data?

a. The presence of specific poisonous ingredients.
b. The color and shape of the plant.
c. The plant’s common habitat.
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Applying the “AI thinks just like humans” heuristic would lead students to
choose option a, which, while logical from a human perspective, is incorrect
for an AI trained solely on visual data. This type of question, coupled with
targeted feedback for incorrect choices, could effectively address misconceptions
and promote a deeper understanding of AI principles. Furthermore, educators
could intentionally incorporate this heuristic in instructional design, embedding
it within the experiential learning cycle to provoke cognitive conflict [15], leading
to enriched learning outcomes.

Our findings indicate that students reported a statistically significant increase
in AI competency after using ActiveAI compared to the control condition. This
improvement may be attributed to the system’s on-demand hints and targeted
feedback, which likely enhanced learners’ self-efficacy in AI literacy. However, as
these outcomes are based on self-reported surveys, caution is warranted in inter-
preting these results due to potential biases such as social desirability bias and
the lack of objective measures. Further research should explore the transferabil-
ity of this increased competency to real-world interactions with AI technologies,
potentially through project-based assessments [34].

Additionally, the study highlighted that both the treatment and control con-
ditions maintained relatively high levels of student engagement, with hands-on
activities involving intelligent agents identified as key engaging factors. This
insight suggests that the inclusion of intelligent agents in AI literacy education
could be a valuable strategy for enhancing student engagement in digital learning
environments. However, the engagement measures were also self-reported, which
calls for caution in interpreting these findings. Future studies should incorpo-
rate more objective measures of engagement, such as behavioral observations or
interaction log data, to provide a more comprehensive understanding of student
engagement.

Also, conducting the study with a limited sample of students from one grade
in East Asia may limit the generalizability of the findings. Cultural and educa-
tional system differences could influence how AI literacy is perceived and learned.
Replicating the study in diverse educational settings and with students from dif-
ferent cultural backgrounds would help validate the findings and enhance their
applicability.

7 Conclusion

A controlled classroom experiment involving 171 middle school learners demon-
strates that ActiveAI effectively aids middle school students in acquiring AI lit-
eracy and developing AI technology competency. This was achieved through the
interactive tutoring system’s active learning experiences, consisting of experien-
tial learning and hands-on interactions with intelligent agents. The system’s abil-
ity to provide immediate, targeted feedback and on-demand hints has addressed
the need for an effective AI literacy learning experience without imposing exten-
sive demands on teacher resources. This study contributes insights into the design
of a scalable and pedagogically sound tutoring system, enhancing the accessibil-
ity of K-12 AI literacy education.
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